第193章 不对称性(2 / 3)

对它的观测表明如此巨大质量恒星的爆炸与先前的理论预测有着基础『性』的差异。

过程会导致内核的温度和密度发生急剧增长。内核的这一能量损失过程终止于向外简并压力与向内引力的彼此平衡。在光致蜕变的作用下,γ『射』线将铁原子分解为氦原子核并释放中子,同时吸收能量;而质子和电子则通过电子俘获过程(不可逆β衰变)合并,产生中子和逃逸的中微子。

在一颗典型的ii型超新星中,新生成的中子核的初始温度可达一千亿开尔文,这是太阳核心温度的六千倍。如此高的热量大部分都需要被释放,以形成一颗稳定的中子星,而这一过程能够通过进一步的中微子释放来完成。这些“热”中微子构成了涵盖所有味的中微子-反中微子对,并且在数量上是通过电子俘获形成的中微子的好几倍。

大约1046焦耳的引力能量——约占星体剩余质量的10——会转化成持续时间约10秒的中微子暴,这是这场事件的主要产物。中微子暴会带走内核的能量并加速坍缩过程,而某些中微子则还有可能被恒星的外层物质吸收,为其后的超新星爆发提供能量。

继续阅读,后面更精彩!

内核最终会坍缩为一个直径约为30千米的球体,而它的密度则与一个原子核的密度相当,其后坍缩会因核子间的强相互作用以及中子简并压力突然终止。向内坍缩的物质的运动由于突然被停止,物质会发生一定程度的反弹,由此会激发出向外传播的激波。计算机模拟的结果指出这种向外扩散的激波并不是导致超新星爆发的直接原因;实际上在内核的外层区域由于重元素的解体导致的能量消耗,激波存在的时间只有毫秒量级。

这就需要存在一种尚未了解的过程,能够使内核的外层区域重新获得大约1044焦耳的能量,从而形成可见的爆发。当前的相关研究主要集中在对于作为这一过程基础的中微子重新升温、自旋和磁场效应的组合研究。

由于氢光谱中的巴耳末吸收线的存在,ii型超新星的光度曲线特征明显:与i型超新星的光度曲线相比,ii型超新星的光度曲线平均每天降低0008等,较前者要低很多。

按照光度曲线的特征,ii型超新星可分为两个子类,一类在光度曲线上有一个平坦的高原区(ii-型),另一类的光度曲线则只存在线『性』衰减(ii-l型)。

如此ii-l型超新星的总体衰减率为每天0012等,高于ii-型超新星的每天00075等。对于ii-l型超新星而言,产生这种差别的原因是在原始恒星中的大部分氢元素外层都被抛『射』出了。

ii-型超新星的光度曲线中的高原区是由于其外层不透明度的变化。爆炸中产生的激波电离了外层中的氢原子,阻止了内部爆炸产生的光子透过外层逸出,从而显着提高了外层的不透明度。当外层的氢离子冷却后重新组合成原子,外层区域的透明度又会回升。

在ii型超新星光谱的诸多反常特『性』中,ii

型超新星有可能诞生于喷『射』物与恒星周围物质的相互作用,而iib型超新星则有可能是大质量恒星在其伴星的『潮』汐力作用下失去了大多数(但不是全部)的氢元素外层。随着iib型超新星喷『射』物的膨胀,余下的氢元素外层很快会变得透光从而能够展『露』出里面的内层结构。

不对称『性』:

长久以来一个围绕着超新星研究的谜团是,如何解释爆炸后产生的剩余致密物质相对内核会有一个如此高的速度。(已经观测到作为中子星的脉冲星具有很高的速度,理论上黑洞也会有很高的速度,但当前还很难通过孤立的观测来证实。)

不管怎样,能够推动物质产生如此速度的作用力应该相当可观,因为它能够使一