摸上去基本上没有手感,好像根本不存在似的。
这应该是一种纳米涂层材料。
姜余用双手稍微扯了一下,感觉非常坚韧,没有弹性,但它就是软绵绵的。
实验人员称了一下它的重量,这片薄膜只有0.01克,也就是10毫克。
在姜余允许下,实验人员开始做抗拉实验。
抗拉实验主要测试材料的抗拉强度和屈服强度。
要说这两个概念,先从材料是如何被破坏的说起。
任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。
对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。
屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。
抗拉强度是材料单位面积上所能承受外力作用的极限。
超过这个极限,材料将被解离性破坏。
一般来说,高延性冷轧带肋钢筋抗拉强度标准值为600—1000pa范围内。
而这种未知材料的抗拉强度居然达到了恐怖的121280pa。
接近优质钢筋120倍的数值,这是一种什么概念?
意思就是说,一根直径2厘米的这种材料,相当于直径22厘米优质钢筋的拉伸强度。
那什么是屈服强度呢?
屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。
比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。
而玻璃、陶瓷、砖石等等,一般没有弹性。
比如40cr这种常见的“万能钢”,一般的调制工艺屈服强度也能接近800pa以上。
而这种未知材料屈服强度居然能够达到了97500pa。
从这两个数字来看,这种未知的材料主体性能是“万能钢”百倍以上。
简单的来说,就是一根直径一毫米的未知材料,可以吊起一辆小轿车那么重的重量。
当然咯,如果单纯说屈服强度高或者抗拉强度高,那么这种材料就未必一定好,一定安全。
比方说只有屈服强度高,同时屈强比低的钢材,才更安全一些!
可惜,这样的钢材成本太高,都不大可能被用于民用车辆上。
有一个指标可能被车企有意无意的遗忘了——冲击韧性或冲击功。
用相同的力,推你一下或者猛击你一下,哪个对你的伤害大?
答案很明显!
钢材的抗冲击能力高低,才是关系的安全的重要因素。
没见过哪一次车祸是慢慢加力直到把车拉断的吧?
都是瞬间撞击!
如果扛不住瞬间作用力,钢铁抗拉强度再大有毛用?
所以问题来了。
一般的汽车钢铁没办法抵抗高强度的外力冲击,那如果涂上这么一层特殊纳米涂层材料呢?
两车高速相撞后,又会有什么样的结果呢?